
Toward Safe Reuse of Product Family Speci�cations

Robyn R. Lutz�

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109-8099

November 15, 1998

Abstract

Upcoming spacecraft plan extensive reuse of software components, to the extent
that some systems will form product families of similar or identical units (e.g., a eet
of spaceborne telescopes). Missions such as these must be demonstrably safe, but the
consequences of broad reuse are hard to evaluate from a software safety perspective.
This paper reports experience specifying an interferometer (telescope) subsystem as a
product family and supplementing the speci�cation with results from a hazards anal-
ysis. Lessons learned are discussed in three areas: (1) integration of hazards analysis
with the product family approach; (2) modeling decisions that have safety implica-
tions (e.g., how to handle near-commonalities, establishing a hierarchy of variabilities,
and specifying dependencies among options); and (3) tracing the product family re-
quirements to the design of the reusable components and to the design of a speci�c
product. The product family approach was e�ective at identifying some latent safety
requirements and in validating the design of the reusable software. The product family
approach lacked an adequate way to distinguish architectural variations from run-time
variations in the model.

1. Introduction

Upcoming spacecraft plan extensive reuse of software components, to the extent that some
systems will form product families of similar or identical units (e.g., a eet of spaceborne
telescopes). Missions such as these must be demonstrably safe, but the consequences of
broad reuse are hard to evaluate from a software safety perspective [1, 6, 13, 16, 19]. This
paper reports experience specifying an interferometer (telescope) subsystem as a product
family, performing a hazards analysis to enhance its software requirements, and using the
requirments to evaluate the design of a reusable component.

Fig. 1 shows an overview of an interferometer. An interferometer is an instrument
(roughly, a collection of telescopes) that makes careful measurements of the locations of stars.

�Mailing address: Dept. of Computer Science, Iowa State University, Ames, IA 50011-1041.

1



Starlight

Beam

Starlight

Combiner

Beam

Telescope Telescope

Beam

Figure 1: Interferometer System Overview

The interferometer uses a number of special mirrors to collect light from these stars. The
collected light is combined and made to \interfere." By calculating the interference, highly
accurate position measurements can be made. The output of a set of small, geographically
distributed collecting instruments is thus used to synthesize the performance of a single
larger instrument [12, 18]

Spaceborne optical interferometers have been identi�ed as a critical technology for many
of NASA's 21st century missions to explore the origins of stars and galaxies and study other
Earth-like planets [14]. Among the spaceborne interferometers under development or pro-
posed for future development are the Spaceborne InterferometryMission, the New Millenium
Separated Spacecraft Interferometer, and the Terrestrial Planet Finder. Anticipated launch
dates range from 2001 to 2020 or beyond. Ground-based interferometer projects, including
the Keck Interferometry Project, are also underway [18].

One of the technological challenges involved in interferometers is the very high precision
needed to achieve the required resolution. Light arrives at one of the interferometer's mirrors
sooner than at the other. Prior to arrival at the beam combiner, optical path delay is added
to the light by means of a delay line component. The delay line compensates for the di�erence
in time between when starlight arrives at the mirrors [8, 9, 10, 11, 12].

Another component of the interferometer, the fringe tracker, provides constant feedback
to the delay line software regarding resolution to guide this adjustment. Due to their criti-
cality, these two components, the Delay Line software and the Fringe Tracker software, were
chosen as initial pieces for de�nition of the interferometer product family.

2



(1)

(2)

Develop Product

Perform Preliminary
Hazards Analysis

Safety

Specifications

Requirements

Requirements for 
common reusable software

Projects’ requirements

Mapping

(3)
Evaluate Design 

of Projects’
Common Software

Family

Figure 2: Three Phases of the Product Family Application

Fig. 2 shows the three phases of the product family approach as applied to the interfer-
ometer software. The contributions made to this application by the product family approach
were (1) to provide a structured speci�cation of both the commonality and variability re-
quirements, (2) to analyze the product family requirements from a safety perspective and
improve them accordingly, and (3) to evaluate the design of reusable software components
by checking whether they satis�ed the product family requirements. Section 2 of the paper
describes the �rst step, the speci�cation of the product family. Section 3 discusses the second
step, the hazard analysis of the product family. Section 4 describes the results of the third
step, design evaluation.

Lessons learned are discussed in three areas:

1. integration of hazards analysis with the product family approach;

2. modeling decisions that have safety implications (e.g., how to handle near-commonalities,
establishing a hierarchy of variabilities, and specifying dependencies among options);
and

3. tracing the product family requirements to the design of the reusable components and
to the design of a speci�c product.

The product family approach proved e�ective at identifying latent safety requirements and
in validating the design of the reusable software. The product family approach lacked an
adequate way to distinguish architectural variations from run-time variations in the model.

3



2. Product Family De�nition

Organizationally, a group was already in place to facilitate reuse among the interferometer
projects when the product family work reported here began. That group was tasked with
identifying and providing reusable, generic software components to the various interferometer
projects. The group consisted of experienced engineers and programmers, led by people with
extensive backgrounds in developing interferometers.

Their development of the reusable software components was evolutionary. It was strongly
object-oriented, with each iteration providing cleaner interfaces and taking advantage of ad-
ditional opportunities for abstraction (class inheritance). The documentation they produced
was primarily textual description and UML diagrams, with the design and code sometimes
outstripping the documentation. The available documentation, together with detailed pre-
sentations during architectural reviews, formed the basis for the speci�cation of the product
family requirements.

The documentation from the reusable software components group emphasized the com-
mon features of the interferometer software, since this was their deliverable. The product
family approach, since it describes both the common and the distinct features of the various
systems, provided a useful safety check and counterpoint to the generic software development.

Some of the variations among the interferometers were discussed in the documentation
of the requirements for the reusable software. Other variations were gathered from exten-
sive web pages describing the interferometers, during review of the initial product family
speci�cations, as will be discussed below, and from comments during the architectural re-
view. In general, the speci�c interferometer projects had not started to document software
requirements at this early stage but, where such documentation existed, it was consulted for
additional variations.

In developing the product family requirements, the process described in the SPC guide-
book was followed for the domain de�nition and domain speci�cation. [21]. SPC recommends
that product family requirements be expressed in such formats as structured, informal text;
assertions; or formal or semi-form speci�cations.

For the domain de�nition, the domain was �rst de�ned informally as the Delay Line and
Fringer Tracker subsystems of interferometers. A standard terminology was then de�ned in
the form of a glossary. The glossary included terms such as \path length" and \baseline
vector" that are used in the description of the software capabilities. The glossary was
repeatedly corrected and supplemented throughout the application in response to additional
input and updates. One of the lessons learned (discussed in Section 5.2) was that each project
had a slightly di�erent vocabulary and slightly di�erent de�nitions for some standard terms.
Precise de�nitions helped uncover subtle variations among the projects' interferometers.

The largest part of the initial e�ort was in what SPC calls \Establish domain assump-
tions." The domain assumptions are divided into commonality assumptions and variability
assumptions. Commonality assumptions are characterisitics shared by all the systems in
the domain. Variability assumptions are characterisitics not shared by all systems in the
domain.

Examples of commonality assumptions are \[Delay Line] receives closed loop target from
Fringe Tracker for �ne-tuning" and \Automatically stops delay line [hardware] when end
of track is reached with software limit feature." Examples of variability assumptions are

4



\The baseline vector knowledge accuracy needed can vary" and \The number of delay lines
can vary." Forty commonality assumptions and twenty variability assumptions were initially
identi�ed for the delay line and fringe tracker components. As will be discussed below, these
numbers changed as the speci�cations were corrected and re�ned.

The data items needed to describe a particular system in this product family were iden-
ti�ed from the variabilities. Each variability identi�ed above had to be quanti�ed by one or
more parameters. These parameters of variability de�ne the range of customer requirements
and decisions that must be made to specify a particular member of the product family (i.e.,
a particular interferometer) [21, 22].

Ardis and Weiss propose the inclusion of the following information for each parameter of
variability: Parameter, Binding, Variability, Default, Domain, and Comments [2, 3]. This
information was speci�ed for the delay line using an automated toolset, SCR* from the Naval
Research Laboratory, with the parameters of variability being documented as monitored
variables [7]. The use of this toolset provided the opportunity for later automated analysis.
SCR* produces table-based speci�cations that are easy to read, update, and distribute on
the web. The automated analysis tools interface seamlessly with the speci�cations. An
accurate, reusable requirements model provides a �rm base for building members of the
product family. As the requirements mature or change, the SCR tables can be updated and
the automatic checks re-run to give some assurance of continued consistency.

The SCR* toolset allowed precise speci�cation of the parameters, the variabilities that
they map to, and their default value. Twenty-three variables and four new data types were
de�ned. The SCR Variable Dictionary produced a tabular description of each variable with
�elds for the data type, initial value, accuracy required and comments. The comment �eld
was used to provide a reference to the variability that produced this parameter of variability,
to indicate the allowable range of values (e.g., the number of delay lines can range from 0
to 8 in current planning), and to indicate the time the value is determined (i.e., bound at
speci�cation time, compile time or run time).

The number of parameters of variability is here (oddly) less than the number of vari-
abilities. This is because one variability relating to the targeting of the interferometer was
decomposed into additional variabilities and parameters of variability during the construc-
tion of the decision model. The higher-level variability was retained in the model for easier
traceability to the requirements documents. However, it contributed no parameters of vari-
ability of its own, and could have been deleted without a�ecting the model's consistency.

A prototype SCR* requirements speci�cation was produced for the delay line component
by Frank Humphrey. The SCR* speci�cation documented the delay line modes and the
events that caused transitions among them. The requirements speci�cation demonstrated
the SCR* capabilities for automatic analysis (e.g., parsing, type-checking, consistency checks,
and some completeness checks) and simulation of the requirements.

A decision was made not to maintain the speci�cation at that point in time since keeping
the commonalities and variabilities precise and current was the focus of this phase. Rapid
review was more easily achieved by re�ning the textual domain speci�cation since structured
English was preferred over formal speci�cations for the review. In addition, uncertainty as
to some projects' software requirements had resulted in updates to the existing requirements
documentation lagging behind the design and (in some cases) code. This encouraged deferral
of a formal product family requirements speci�cation until the components' requirements had

5



Number Hazard Status

1. Can't match delay New
2. Wrong position Open
3. Wrong velocity New
4. Hardware failure Beyond Scope
5. Hardware failure Beyond Scope
6. Acceleration too high New
7. Invalid parameter New
8. Runs o� track Handled
9. Fringe tracker to wrong delay line Beyond Scope
10. Interface failure Beyond Scope
11. Hardware failure mode Beyond Scope
12. Maintenance failure Beyond Scope
13. Maintenance failure Beyond Scope
14. Hardware failure mode Handled

Table 1: Summary of Results of Preliminary Hazard Analysis

been documented.
The Speci�cation Assertion Dictionary feature provided in SCR* was used experimentally

to document some dependencies among the variabilities. For example, an interferometer can
be either a guide or a science interferometer. An interferometer can have, or not have, a
feedforward target. Each of these statements captures a possible variability. A dependency
among these variabilities is that a feedforward target can only exist if there is a guide
interferometer. Using the Speci�cation Assertion Dictionary, predicates such as this could
be documented and checked.

3. Hazards Analysis

\Hazards analysis is at the heart of any e�ective safety program," according to Leveson
[15]. A Preliminary Hazards Analysis was performed for the target subsystem. Input to the
process included the existing documentation for the delay line components on the various
interferometers, the delay line's interactions with the system, presentations, and discussions.
Review of these yielded a list of hazards involving delay lines that might occur during
operations.

The hazards were then analyzed to see if the existing product family requirements pro-
vided mitigation of the hazards. In some cases, an additional safety requirement could be
derived and added to the product family requirements.

Fourteen hazards were identi�ed for the delay line component. A high-level summary
of the hazards is shown in Table 1. The second column indicates the current status of the
hazard. \Beyond Scope" in this column indicates that mitigation of the hazard is beyond
the scope of the delay line software (i.e., either a hardware responsibility or associated

6



with other software). \Handled" indicates that the existing product family requirements
prevent or handle the hazard. \New" in the column shows that an additional software safety
requirement was derived from the hazard analysis and proposed for inclusion in the product
family requirements. \Open" means that it is still unclear what the requirement should
be (e.g., exactly what kinds of graceful degradation are possible while still retaining the
scienti�c usefulness of the instrument).

Two hazards were controlled by existing product family requirements. Four additional
safety requirements were recommended for addition to the product family requirements as a
result of the PreliminaryHazards Analysis. Three of these involved additional reasonableness
checks on the validity of the input or the output. One involved the addition of a requirement
for a watchdog timer. Incorporating the results of the preliminary hazards analysis into the
product family approach allowed four derived software safety requirements to be added to
the product family requirements.

Some additional software safety requirements can be derived from the PHA but are
outside the scope of the delay line software (e.g., a software check that the commanded
con�guration or cross-strapping is permitted). Further analysis (e.g., a fault tree analysis
[16]) of the hazards can help identify safeguards against these remaining hazards.

4. Design Evaluation

The third piece of this work was to evaluate the design of the reusable software components
that were being developed against the product family requirements. Each of the twenty
commonality requirements for the Delay Line Component was traced to the existing design
documentation for the generic software and to the design documentation for the �rst interfer-
ometer (a testbed version) [8, 9]. These design documents were preliminary drafts containing
interface, blackbox (i.e., functional) descriptions of tasks triggered by events, and some state
transition diagrams and sequence diagrams. The results from the design evaluations are
merged here since no interesting di�erences among the two design evaluations emerged (a
tribute to the reusable software component group's work).

One result of the design evaluation was that three of the commonalities were not traceable
to the preliminary design. Another three requirements were implied in the design (e.g., evi-
dently embedded in the algorithms) but were not explicitly addressed. These numbers don't
include the four commonality requirements derived from the preliminary hazards analysis,
since they were too low-level to be traced to this design document.

It should be noted that the presence of product family requirements not traceable to the
software design does not indicate a design error, since the generic reusable software is not
responsible for providing all common services. However, the mismatches between product
family requirements and software design indicate points at which a product family design
would diverge from the reusable software component design. The mismatches may also
indicate areas in which future customer expectations of genericity will not be served by the
available software.

On the other hand, several features present in the design were not included in the product
family requirements, but should have been. For example, one interface, the error stream that
outputs data to other components of the interferometer, was in the design but missing in

7



the requirements. In addition, two event-driven tasks in the design (e.g., commanding the
delay line to a home position) were missing in the product family requirements. Finally,
two design features (e.g., clearing a counter) were implied but not made explicit as required
capabilities.

The design was also checked to see that it did not preclude any of the thirty-�ve variabil-
ities. Of these, �ve were out-of-scope of the delay line component design (e.g. the variability
\The number of delay lines can vary" is handled at a higher level than the delay line com-
ponent, which is instantiated once for each delay line. An additional three of the thirty-�ve
variabilities were too detailed to check against the top-level design (e.g., calibration require-
ments) and were deferred to the detailed design.

More interesting is that one variability, dealing with a range of possible values, may be
precluded by an implicit design assumption that the range is more limited. One other vari-
ability was violated by the design, but investigation revealed that it was the variability that
was in error. The variability described the cross-strapping (con�guation) of the delay line
and fringe tracker, but assumed a one-to-one correspondence between them, in accordance
with the available requirement documentation. The design states that the delay line re-
ceives targets from one or more fringe tracker components, i.e., a one-to-many relationship,
a correct reection of the actual requirements [9].

An additional eight issues relating to the design or the preliminary design documentation
were identi�ed during the course of the evaluation of the design against the product family
requirements. One of these involved a question regarding the architecture of the component.
Others dealt with inconsistencies in the description, information that needed to be included
in future versions, and one interface misnomer.

The use of the product family requirements for design evaluation was e�ective in two
ways. First, tracing the requirements to the design agged possible omissions in both the
reusable and the individual design. Second, it improved and, to some extent, validated the
adequacy and accuracy of the current product family requirements preparatory to future,
more extensive development. The design evaluation was a two-way street: the design omitted
some features needed to satisfy the product family requirements, and the product family
requirements omitted some features, such as error handling, addressed in the design.

5. Discussion and Conclusions

5.1 Modeling Decisions

In the course of the speci�cation and analysis of the product family requirements, modeling
decisions with safety implications were made. The discussion that follows describes the al-
ternatives, the trade-o�s, the choices that were made, and{with hindsight{the recommended
choices.

� Near-commonalities Near-commonalities, in which the commonality was true for al-
most all the systems in the domain, frequently had to be modeled. As an example,
one near-commonality was \Receives Open Loop Target command [from a particular
computer]". However, one interferometer will instead get all its targets from pre-
programmed sequences. Seven of the nine commonalities challenged by the review

8



were true in all but a single member of the product family. This one interferometer is
planned as a demonstration project of speci�c technical capabilities. Consequently, it
does not require some features needed by the subsequent scienti�c missions. The other
two of the nine commonalities challenged by the review were also each true for all but
one product family member (a di�erent one in each case).

These near-commonalities can be represented as variabilities. This choice has the
advantage of more explicitly calling out the variations that have to be addressed when
a project uses the decision model to build a new system. Since unsafe reuse often
involves erroneous assumptions of commonality, classifying the near-commonalities as
variabilities, with notations as to their near-ubiquity, was the approach �rst taken.

However, an alternative is to introduce a parameter of variability that enumerates the
speci�c interferometers and then represent a near- commonality, call it NC, that is true
for all except product family member i as a commonality of the form \If not member
i, then NC." Such statements, or constrained commonalities, are invariants over the
domain.

It is anticipated that how best to model near-commonalities will be a recurring issue in
product family evolution. In a business study of the Sony tape transport (Walkman),
the authors posit that the competitive advantage is skill in managing the evolution of
the product family [20]. Dikel, et al., discuss the risk of \architecture deterioration" as
commonalities erode [4]. Much has been written about the need to fully anticipate the
expansion of options in an evolving product family. However, given the frequency with
which projects' scopes are reduced after development begins in response to budget or
schedule constraints, unanticipated reduced functionality also occurs.

The product family requirements need to, as much as possible, anticipate and model
the range of possible reductions. Some of these reductions in functionality will turn
commonalities into near-commonalities. Whether represented as variabilities or as
constrained commonalities, safe reuse mandates that exceptions to the assumption of
commonality be speci�ed. Extensive cross-referencing then allows ready identi�cation
of the near-universality of the requirement from any point of entry into the requirements
speci�cation.

� Dependencies among options

How to model the dependencies among the variabilities is another modeling decision
that had to be addressed in this application. The SPC process anticipates that each
new project (family member) will be developed by determining an appropriate set
of choices from among the set of variabilities. An area of concern for safe reuse is
whether dependencies exist among these variabilities and, if so, how to represent them
and check that they are satis�ed for each new family member.

These are constraints on the decision model of the form, \If you choose option A for
variability V1, then you must choose option B for variability V2." There were sev-
eral such dependencies to represent for the delay line. For example, one variability is
whether or not cross-strapping (recon�guration) is possible for this particular inter-
ferometer. Another variability is whether or not the interferometer that a delay line

9



is on can shift. However, disallowing cross-strapping compels the value of the second
variability.

There are several ways to model such dependencies among variabilities. The SPC
guidebook suggests as a heuristic that decisions, such as mutually dependent deci-
sions, be grouped and that the logical connections between the decision groups then
be de�ned. Ardis suggests writing such constraints as commonalities, where the com-
monality is the required relationship between the parameters of variation. To illustrate
this, we use a simple invariant. (Expert review later revealed the alleged invariant to
be false in some situations, but that inconvenient truth will be ignored for a moment).
One variability is that the number of delay lines varies. Another variability is that
the number of fringe trackers varies. A dependency among the variabilities is that the
number of delay lines must equal the number of fringe trackers. This constraint, as
Ardis points out, is in fact a commonality; all interferometers in this product family
must have the same number of delay lines and fringe trackers.

In this case, the number of fringe trackers and number of delay lines are parameters of
variation, represented in the SCR variable table as monitored variables. The depen-
dency among variabilities was recorded in the SCR Speci�cation Assertion Dictionary
as an assertion stating that the two parameters of variation are equal.

� Hierarchy of variabilities

A modeling question that was investigated was whether the interferometers could be
organized into a hierarchy such that all the interferometers grouped at a single node
share the same value for many parameters of variability. This question was, for this
application, answered largely in the negative, but more work is needed to answer it for
larger product families.

A tree was constructed with the top node being all interferometers for which there are
no parameters of variability with a shared value among all interferometers. (If they all
had the same value, we would have an additional commonality.) At the second level of
the tree were two nodes, spaceborne interferometers and groundbased interferometers.
At the third level of the tree, the spacebased interferometers were divided into �xed-
axis collectors and formation-ying collectors, and so on.

This approach was discarded for two reasons. First, there were several possible trees,
with often no compelling reason to select one tree over another. For example, perhaps
the branch at the second level should be into prototypes and non-prototypes, rather
than into spaceborne and groundbased. Both hierarchies are reasonable alternatives.
Counting up the number of parameters of variability with shared values in each of the
alternative trees is possible but not readily scalable, and lacks the intuitive appeal of
an agreed-upon partitioning.

Second, while family members at a node did share the same value for some parameters
of variability, the hierarchy did not provide additional useful structure or insight in
this application. This was largely due to the fact that the number of variabilities was
manageable and that most of the branch points in the hierarchy were already known
to be key boolean variables in the speci�cation (e.g., whether or not the interferometer
had a �xed axis for its baseline).

10



For larger product families, it may be that a hierarchy of variabilities would be ben-
e�cial. In general, being able to group the variabilities, much as SPC recommends
grouping decisions in the decision model, would seem to simplify reuse and simplify
the safety analysis of the variabilities. However, in this application, the e�ort did not
pay o�.

� Distinguishing types of variabilities

Two di�erent types of variabilities exist for the interferometer product family. The
�rst type, and the most common, describes variations among the interferometers' ar-
chitecture (e.g., what actuators the delay line controls), hardware con�guration (e.g.,
whether the baseline is �xed or variable), or choice of algorithm (e.g., for dither cali-
bration). This type of variation is determined at speci�cation time and is constant for
each member of the product family.

The second type of variability describes dynamic variations among the interferometers.
These are variabilities that, for a particular member, can vary over time. An example
is what kind of target is selected (e.g., diagnostic or feedforward). Another example
is if the �ltering algorithm used depends on some property of the data received [22].
These variations involve dependencies of the required behavior on run-time scenarios.

Looking at examples of other product family speci�cations provided informally to
the author, it appears that this distinction is a common issue. The requirements
speci�cation for some members' behavior is based in part on run-time variations in the
environment.

Ardis and Weiss handle this issue by documenting the binding of each parameter of
variability. Each parameter is bound at speci�cation, compile, or run-time in their ap-
proach. This is valuable information for safety analyses since it distinguishes what is
constant for a member from what varies dynamically for that member. However, even
with the binding information, the product family approach still collapses the decision
model and the requirements speci�cation for a particular member into a single struc-
ture. The representation here of both types of parameters of variability as monitored
variables in the SCR speci�cation also fails to adequately distinguish the two types of
variability. More work, perhaps along the lines of [23], is needed to better represent
these aspects of the domain speci�cation of product families.

All four of the modeling issues described here have safety implications. Common vari-
abilities can be modeled as constrained commonalities (e.g., invariants of the form
\For all interferometers, if the axis is not �xed, then the interferometer has an ex-
ternal metrology component"). Dependencies among variabilities can be modeled as
relationships among variabilities (i.e., assertions) or as commonalities, where the terms
are parameters of variability. Variabilities can be grouped in a hierarchical structure
where the product family members at a node share the values of certain parameters
of variability. Those variabilities not known until run-time can be distinguished and
analyzed separately. In all these modeling decisions, accurate representation of the
limitations on the commonalities (not overstating similarities) provides the strongest
safeguard against the risks of reuse. Capturing dependencies among variabilities pro-
tects against inconsistent systems and provides a more complete requirements model

11



for further safety analyses.

5.2 Results of Review

� Limits to a shared vocabulary. One of the unexpected aspects of the review was that the
language in the documents specifying the reusable software was not always familiar to
the developers on a speci�c project. Some of the product family requirements, written
using the vocabulary of the reusable software project, were found to be ambiguous
during the review, since each project had a slightly di�erent vocabulary.

The glossary, produced as one of the �rst steps in the process, was some help, but
lacked precision in some entries. The obvious solution was to introduce some degree
of formal speci�cation [5], and this was partially done with the SCR* speci�cation.
The unclear words or phrases were also rewritten for reviewers into more precise text.
This was supplemented by the more formal SCR description to serve as a reference for
future queries.

� Review decreased commonalities. The commonalities and variabilities for the Delay
Line component were reviewed by an engineer with experience on interferometers.
Nine of the twenty-nine delay line commonalities were deleted after review. It turned
out to be very hard to write unambiguous textual statements that all customers agree
will certainly apply to them. All nine of these deleted commonalities were generally
true, however, and were added as variabilities.

This caused a re-evaluation of whether the targeted subsystems did, in fact, form a
product family. The conclusion was that, based on the SPC de�nitions as well as
management perception, they did form a product family. The similarities among the
instantiations of these subsystems are both widespread and speci�c, encompassing
requirement, architectural, and design commonalities.

� Review increased variabilities Conversely, after review and update, the twenty-three
variabilities increased to thirty-�ve and four others were modi�ed by additional infor-
mation. The increase in variabilities tended to a�rm the value of the review from a
safety perspective, since these additional insights largely involved subtle distinctions
among interferometer components, atypical interactions, or occasional modes. Cap-
turing these additional variabilities at the requirements stage was the most signi�cant
advantage of the review.

5.3 Lessons Learned

The process of domain de�nition for the chosen interferometer components was fairly straight-
forward, and largely followed the approach outlined in [21, 2, 22]. However, the e�ort experi-
enced a lack of guidance for making speci�c modeling decisions involving near-commonalities
and relationships among variabilities.

In part, this is due to the limited number of examples in the literature. There is an
especial need for more examples that deal with both variable system con�gurations and
variable inputs to that system. Although the SPC guidebook discourages considering runtime

12



variations in the decision model, it is impossible, as Weiss points out, to describe the required
behavior without modeling those monitored variables. Additional examples that are object-
oriented would also be welcome. Finally, as Miller has pointed out, there is a need for more
product family engineering to describe how to model the requirements for an entire family
of products [17].

The modeling decisions that have safety implications, such as how to handle near-
commonalities, specifying dependencies among variabilities, and hierarchies of variabilities
within the product family, were the most time-consuming and di�cult part of the process.
In general, thorough documentation of the variabilities, even at the cost of minimizing pos-
sible commonalities, was chosen as the safest course of action. Safe reuse depends on the
underlying assumptions of commonality being true.

The integration of the hazards analysis with the product family approach contributed
four derived safety requirements to the product family requirements. Incorporation of these
additional safety requirements o�ers a standardized way to mitigate certain operational
hazards in the delay line component.

The product family requirements were useful in evaluation of both the design of reusable
software components and in the design of a speci�c delay line. Requirements traceability
from the product family to the family members identi�ed both a variability and three com-
monalities that were not fully traceable to the design, as well as errors and omissions in
the product family speci�cations. The product family approach supports reuse; experience
applying it to the interferometer components suggests some ways in which it can support
safe reuse.

Acknowledgments

The author thanks Brad E. Hines for help in understanding interferometers, Richard L.
Johnson and John Y. Lai for feedback on this work and for their careful explanations, Frank
J. Humphrey for initial development of an SCR speci�cation, and Mark A. Ardis for timely
suggestions regarding representation of relationships among variations.

The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

Reference herein to any speci�c commercial product, process, or service by tradename,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by
the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

References

[1] Addy, Edward A., \A Framework for Performing Veri�cation and Validation in Reuse-Based
Software Engineering," Annals of Software Engineering , Vol. 5, 1998.

[2] Ardis, Mark A. and David M. Weiss, \De�ning Families: The Commonality Analysis,"
Tutorial, International Conference on Software Engineering, 1997.

13



[3] Ardis, Mark A. and David Weiss, \Commonality Analysis: Principles and Practice, Intro-
duction and Overview Notebook," May 19, 1997.

[4] Dikel, David, David Kane, Steve Ornburn, William Loftus, and Jim Wilson, \Applying
Software Product-Line Architecture," Computer , August, 1997, pp. 49{55.

[5] Easterbrook, S., R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton, \Experiences
Using Lightweight Formal Methods for Requirements Modeling," IEEE Transactions on
Software Engineering , Vol. 24, No. 1, January, 1998, pp. 4{14.

[6] Gomaa, Hassan, \Reusable Software Requirements and Architectures for Families of Sys-
tems," Journal of Systems and Software, Vol. 28, No. 3, March, 1995, pp. 189{202.

[7] Heitmeyer, C., A. Bull, C. Gasarch, and B. Labaw (1995), \SCR: A Toolset for Specifying
and Analyzing Requirements," In Proceedings of the 10th Annual Conference on Computer
Assurance, IEEE, Gaithersburg, MD, pp. 109{122.

[8] JPL Internal Document, \QuIC Delay Line Component," January 28, 1998.

[9] JPL Internal Document, \Delay Line Component," January 28, 1998.

[10] JPL Internal Document, \Interferometry Technology Program, Real-Time Control, Software
Architecture Review," June 19, 1998.

[11] JPL Internal Document, \RICST Software Overview," November 2, 1997.

[12] JPL Internal Document, \RICST Increment 2 Black Box Speci�cation," February 5, 1998.

[13] Lam, W., J. A. McDermid, and A. J. Vickers, \Ten Steps Towards Systematic Requirements
Reuse," Third IEEE International Symposium on Requirements Engineering , IEEE, Jan. 6-
10, 1997, pp. 6{15.

[14] Lau, Kenneth, M. Colavita, and M. Shao, \The New Millennium Separated Spacecraft
Interferometer," Space Technology and Applications International Forum (STAIF-97), Al-
buquerque, NM, January 30, 1997.

[15] Leveson, N. G. (1995), Safeware: System Safety and Computers , Addison-Wesley, Reading,
MA.

[16] Lutz, Robyn, G. Helmer, M. Moseman, D. Statezni, and S. Tockey, \Safety Analysis of Re-
quirements for a Product Family," Proceedings of the Third IEEE International Conference
on Requirements Engineering (ICRE '98), April 6-10, 1998, Colorado Springs, CO.

[17] Miller, S. P. (1998), \Specifying the Mode Logic of a Flight Guidance System in CoRE and
SCR," 2nd Workshop on Formal Methods in Software Practice, Clearwater Beach, FL.

[18] \NASA's Interferometry Program: The Search for Life Beyond the Solar System: Some
Facts and Figures," June 16, 1997.

[19] Rushby, John, \Critical System Properties: Survey and Taxonomy," Reliability Engineering
and System Safety , Vol. 43, No. 2, 1994, pp. 189{214.

[20] Sanderson, Susan Walsh and Mustafa Uzumeri, The Innovation Imperative: Strategies for
Managing Product Models and Families , Chicago: Irwin Professional Publishing, 1997.

14



[21] Software Productivity Consortium (Nov., 1993), Reuse-Driven Software Processes Guide-
book, SPC-92019-CMC, v. 02.00.03.

[22] Weiss, D. M. (1997), \De�ning Families: The Commonality Analysis," submitted for pub-
lication.

[23] Zave, Pamela and Michael Jackson, \Four Dark Corners of Requirements Engineering,"
ACM Transactions on Software Engineering and Methodology , Vol. 6, No. 1, January, 1997,
pp. 1{30.

15


